
Tom Peterka	


tpeterka@mcs.anl.gov	


Mathematics and Computer Science Division	
LANL Talk 2/28/12	


Do-It-Yourself Data Analysis:	

Selected Topics and Recent Adventures	


(or, ten ways to win friends and parallelize data analysis)	


Morse-Smale 
Complex of 

combustion in 
the presence of 

a cross flow	




Argonne Data Science���
Several levels of data movement for data-intensive science applications	


2	


WAN	


LAN	


Data-parallel	


!"#$%&'
(")'*

+,-&./

012
(")'*

34&4567489*-*
!8%*&':

;4:488'85<-8'5
+9*&'#

6=!<

2=!<

(>?+!

(!+6

;84&@":#A5=!<
?'*'4:./A5;4:488'8547489*-*
07@:4*&:%.&%:'
B:"%$*A5<%&%:'*5=4C
;0*A5D-*/,474&/

;84&@":#A5E;!5#4./-7'
?'*'4:./A5;4:488'8
47489*-*548F":-&/#*
B:"%$*A5?4)-G5=4C
;0*A5;'&':H4

I J K L M N O P

Q R JI JJ JK JL JM JN

Q JI JK JM

Q JK

I J K L M N O P

Q R JI JJ JK JL JM JN

I J K L M N O P

Q R JI JJ JK JL JM JN

I J K L M N O P

Q R JI JJ JK JL JM JN

I J K L M N O P

Q R JI JJ JK JL JM JN

I J K L M N O P

Q R JI JJ JK JL JM JN

I J K L M N O P

Q R JI JJ JK JL JM JN



Executive Summary���

DIY helps the user write data-parallel analysis algorithms. ���

3	


Main ideas and Objectives 	


-Large-scale parallel analysis (visual and 
numerical) on HPC machines	

-Scientists, visualization researchers, 
tool builders	


-In situ, coprocessing, postprocessing	

-Data-parallel problem decomposition	

-Scalable data movement algorithms	


Benefits	


-Researchers can focus on their own 
work, not on parallel infrastructure	


-Analysis applications can be custom	

-Reuse core components and algorithms 
for performance and productivity	


Today’s talk	


-Main design concepts, that include both	

     -A DIY overview, as well as	

     -Recent advances and new ideas	




Particle tracing of thermal hydraulics flow Information entropy analysis of astrophysics 

Morse-Smale complex of combustion Voronoi tessellation of cosmology 

Observation #1: Data Analysis Comes in Many Flavors	




#1: Separate Analysis Ops from Data Ops	


You do this yourself	


Can use serial libraries such as OSUFlow, Qhull, VTK 
(don’t have to start from scratch) 

DIY handles this 

Analysis Application Application 
Data Model 

Analysis 
Data Model 

Analysis 
Algorithm 

Particle 
Tracing 

CFD Unstructured 
Mesh 

Particles Numerical 
Integration 

Information 
Entropy 

Astrophysics AMR Histograms Convolution 

Morse-Smale 
Complex 

Combustion Structured 
Grid 

Complexes Graph 
Simplification 

Computational 
Geometry 

Cosmology Particles Tessellations Voronoi 

Communica
tion 

Additional 

Nearest 
neighbor 

File I/O, 
Domain 
decompositi
on, process 
assignment, 
utilities 

Global 
reduction, 
nearest 
neighbor 

Global 
reduction 

Nearest 
neighbor 



DIY Overview	


6	


Library structure	


Written in C++	

C bindings	

Future Fortran bindings	


DIY usage and library organization	


Features	


Parallel I/O to/from storage	

-MPI-IO, BIL	


Domain decomposition	

-Decompose domain	

-Describe existing decomposition	


Network communication	

-Global reduction (2 flavors)	

-Local nearest neighbor	


!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%



Observation #2: Application Data Model ≠Analysis Data Model	


7	


HACC (cosmology) 
Data Model	


int num_particles;	

float *xx, *yy, *zz;	

float *vx, *vy, *vz;	

float *phi;	

int64_t pid;	

uint16_t mask;	


Corollary: analysis X data 
model ≠ analysis Y data 
model  	


Tess (voronoi tessellation) Data Model	

float mins[3]; 	

float maxs[3]; 	

int num_verts; 	

int num_cells; 	

double *verts; 	

int *num_cell_verts; 	

int tot_num_cell_verts;	

int *cells	

double *sites; 	

int num_complete_cells; 	

int *complete_cells; 	

double *areas; 	

double *vols; 	

int tot_num_cell_faces;	

int *num_cell_faces; 	

int *num_face_verts;	

int tot_num_face_verts;	

int *face_verts;	




#2: Allow User to Define Data Model	


8	


-Any C/C++/Fortran data structure can be represented as an DIY (MPI) data type	

-DIY uses data type to fetch data directly from memory or storage	

-User does not pack / unpack (serialize / deserialize) data	

-Zero copy at application level saves time and space	

-DIY helps make data type creation easier	


float mins[3]; 	


float maxs[3];  	

double *verts; 	


double *sites; 	


int *complete_cells; 	

double *areas; 	


double *vols; 	

int *num_cell_faces; 	


int *num_face_verts;	


int *face_verts;	


DYI_Datatype type;	


struct map_block_t map[] = {	

  { DIY_FLOAT,    OFST,  3,  offsetof(struct vblock_t, mins)                                  },	


  { DIY_DOUBLE, ADDR, v->num_verts * 3, DIY_Addr(v->verts)                         },	


  { DIY_DOUBLE, ADDR, v->num_cells * 3, DIY_Addr(v->sites)                           },	

  { DIY_INT,         ADDR, v->num_complete_cells, DIY_Addr(v->complete_cells) },	


  { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->areas)               },	

  { DIY_DOUBLE, ADDR, v->num_complete_cells, DIY_Addr(v->vols)                 },	


  { DIY_INT,         ADDR, v->num_complete_cells, DIY_Addr(v->num_cell_faces) },	


  { DIY_INT,         ADDR, v->tot_num_cell_faces, DIY_Addr(v->num_face_verts) },	

  { DIY_INT,         ADDR, v->tot_num_face_verts, DIY_Addr(v->face_verts)        },	


  { DIY_FLOAT,    OFST,  3, offsetof(struct vblock_t, maxs)                                  },	

};	


DIY_Create_struct_datatype(DIY_Addr(vblock), 10, map, dtype);	


C data structure	
 DIY data type	




#3: Group Data Items Into Blocks	


9	


The block is DIY’s basic unit of data. Original dataset is decomposed into generic 
subsets called blocks, and associated analysis items live in the same blocks. Blocks 
contain one or more instances of the data type described earlier.	


Structured Grid AMR Grid Unstructured Mesh



#4: Blocking ≠ Process Assignment	


10	


All data movement operations are per block; blocks exchange information with 
each other using DIY’s communication algorithms. DIY manages and optimizes 
exchange between processes based on the process assignment. This allows for 
flexible process assignment as well as easy debugging.	


8 processes 4 processes 1 process



#5: Time is Like Space, but Special	


11	


-Time often goes forward only	

-Usually do not need all time steps at once	


Hybrid 3D/4D time-space decomposition. Time-space is represented by 4D 
blocks that can also be decomposed such that time blocking is handled separately. 	


!"#$%&'(&)#*+',-'

./0(-1#20(-1#30(-1#40(-5

./0&+1#20&+1#30&+1#40&+5

./0(-1#20(-1#30(-5

./0&+1#20&+1#30&+5
!"#$%&

!"#'(&

'(0,

'6
'7

'8

9%&'(&)#:);<=
>,?'(<,9

',0%;?&)
:);<=

'(0,#9',%9

'!
'8

'@

'A
'@

'B

@"#C);<=

@"#D,(EF:;?F;;G
.-;'#G?&H-5

!"#$%&'(&)#D,(EF:;?F;;G 6"#4,0%;?&)#D,(EF:;?F;;G

@" !" 6"

6"#4,0%;?&)#*+',-'



#6: Group Blocks into Neighborhoods	


12	


-Limited-range communication	

-Allow arbitrary groupings	

-Distributed, local data structure and 
knowledge of other blocks (not master-
slave global knowledge)	


!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

!"#$%
&'(

!"#$%
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

333

!"#$%
&'(

!"#$%
)*+),+-

333

333

!"#$%
&'(

!"#$%
)*+),+-

333

"'(1415

"'(1416

"'(141
,!"#$%-1716

&'(141&"#!8"1!"#$%1'(),+'9'$8+'#,
"'(141"#$8"1!"#$%1'(),+'9'$8+'#,
2'(1412/#$)--1'(),+'9'$8+'#,

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-

,)'&.!#/
&'(012'(0
)*+),+-



#7: Provide Different Neighborhood Communication Patterns	


13	


DIY provides point to point and different varieties of collectives within a neighborhood via 
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	


DIY_Enqueue_item_pt()
DIY_Enqueue_item_mask()

DIY_Enqueue_item_all() DIY_Enqueue_item_half()

DIY_Enqueue_item_all_near()
DIY_Enqueue_item_half_near()

Support for wraparound neighbors 
(repeating boundary conditions)



#8: Make Global and Neighborhood 
Communication Fast and Easy	


14	


DIY provides 3 efficient scalable communication algorithms on top of MPI. May be 
used in any combination.	


Analysis Communication 

Particle Tracing Nearest neighbor 

Global Information 
Entropy 

Merge-based reduction 

Point-wise Information 
Entropy 

Nearest neighbor 

Morse-Smale Complex Merge-based reduction 

Computational Geometry Nearest neighbor 

Region growing Nearest neighbor 

Sort-last rendering Swap-based reduction 

Factors to consider when 
selecting communication 
algorithm:	

-associativity	

-number of iterations	

-data size vs. memory size	

-homogeneity of data	




3 Communication Patterns	


15	


!"#$%&'
' ( ) * + , - .

/ 0 (' (( () (* (+ (,

!"#$%&(

!12#342

' ( ) * + , - .

/ 0 (' (( () (* (+ (,

' ( ) * + , - .

/ 0 (' (( () (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	
 Swap-based 
reduction	


Merge-based 
reduction	




#9: Support Applications ���

In Situ Unstructured Spectral Meshes With Help from MOAB	


16	


-Decomposition assigned by the application, not DIY	

-DIY needs to get the decomposition from the app	

-Call on MOAB for help with connectivity	


Given the above mesh, assume the 
green block wants ghost cells in a given 
ghost radius of size t.	


Result: the green block will have 
these cells (original green cells plus 
transparent cells)	


t



#9 Continued	


17	


void foo(imesh *mesh) {   // MOAB mesh	

  DIY_Init(num_blocks);	

  for (num_blocks) { 	

    // query MOAB for verts in block	

    get_adjacencies(hex, adj_verts);	

    BlockBounds(bounds); // find min/max of verts 	

    // query MOAB for local neighbors of vertices	

    get_adjacencies(adj_verts, adj_hexes); 	

    store adj_hexes in neighbors, num_neighbors	

    // query MOAB for remote neighbors 	

    get_sharing_data(adj_verts, remote_handles,          	


        remote_procs); 	

    remote_data = remote_handles, remote_procs; 	

    // query MOAB for local vertex ids	

    loc_vids[block] =	

         id_from handle(shared_adj_verts); 	

  }	

  DIY_Decomposed(blocks, bounds, remote_data,  	

      num_remote_data, loc_vids, neighbors,	

      num_neighbors);	

}	


while (!done) {	

   for (cells) {	

      for (neighbors) {	

         if (cell intersects neighbor extents + t &&	

              cell was not sent already &&	

              cell did not come from neighbor)	

                 post cell to neighbor;	

      }	

   }	

   num_recvd = DIY_Exchange_neighbors();	

   done = DIY_Check_done_all(!num_recvd); 	


}	


!



#10: Work With Other Libraries	


We are helped by:	

Zoltan-partitioning for dynamic load 

balancing	

MOAB-unstructured mesh 

management	

HDF5 and parallel netCDF-high 

level storage	

MPI (of course)	


We can help with:	

ITL-Information theoretic analysis	


MSC-Morse-Smale analysis	


OSUFlow-Particle tracing	

Qhull-Computational geometry	


VTK-Visualization and analysis 
filters	


18	




Tom Peterka	


tpeterka@mcs.anl.gov	


Mathematics and Computer Science Division	


Acknowledgments:	


Facilities	

Argonne Leadership Computing Facility (ALCF)	


Oak Ridge National Center for Computational Sciences (NCCS)	


Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	


Do-It-Yourself Data Analysis: Selected Topics and 
Recent Adventures 

http://www.mcs.anl.gov/~tpeterka/
software.html	


https://svn.mcs.anl.gov/repos/diy/trunk	


LANL Talk 2/28/12	



